Spermidine/spermine n(1)-acetyltransferase catalyzes amantadine acetylation.

نویسندگان

  • A P Bras
  • J Jänne
  • C W Porter
  • D S Sitar
چکیده

Amantadine acetylation was demonstrated to occur both in vivo and in vitro using transgenic male mice overexpressing spermidine/spermine N(1)-acetyltransferase (SSAT). We previously reported that neither NAT1 nor NAT2 was responsible for catalyzing acetylation of the primary amine group of amantadine. We hypothesized that the inducible polyamine-catabolizing enzyme, SSAT, was an alternate pathway for acetylating amantadine. Transgenic mice injected s.c. with 3 mg/kg amantadine excreted 4.5 +/- 1% (mean +/- S.E.) of the administered dose as acetylamantadine in 24-h urine samples while, by contrast, nontransgenic control mice failed to excrete any detectable acetylamantadine in their urine. In vitro studies with the cytosolic liver fraction from transgenic mice as the source of SSAT demonstrated spermidine acetylation catalytic activity with an apparent K(m) = 267 +/- 46 microM and V(max) = 0.009 +/- 0.002 nmol/min/mg of protein. Amantadine competitively inhibited spermidine acetylation with an apparent K(i) = 738 +/- 157 microM. Incubation of amantadine, SSAT, and an acetyl CoA-regenerating system produced modest amounts of acetylamantadine. The NAT2 substrate, sulfamethazine, inhibited spermidine acetylation with a calculated K(i) = 3.5 mM, suggesting that SSAT may be an alternate pathway for acetylation of NAT2 substrates. The NAT1 substrate, p-aminobenzoic acid, had no inhibitory effect. These results provide evidence that amantadine can be acetylated by SSAT and may be a specific drug substrate for this enzyme. Further investigation of the role of SSAT as a potential drug-metabolizing pathway is warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermidine/spermine N-acetyltransferase Catalyzes Amantadine Acetylation

Amantadine acetylation was demonstrated to occur both in vivo and in vitro using transgenic male mice overexpressing spermidine/spermine N-acetyltransferase (SSAT). We previously reported that neither NAT1 nor NAT2 was responsible for catalyzing acetylation of the primary amine group of amantadine. We hypothesized that the inducible polyamine-catabolizing enzyme, SSAT, was an alternate pathway ...

متن کامل

Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation.

Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show th...

متن کامل

Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis.

Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both ...

متن کامل

Inactivation of eukaryotic initiation factor 5A (eIF5A) by specific acetylation of its hypusine residue by spermidine/spermine acetyltransferase 1 (SSAT1).

eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [Nϵ-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or deoxyhypusine residue of eIF5A by a key polyamin...

متن کامل

Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine.

A cytosolic spermidine N-acetyltransferase has been partially purified from livers of rats treated with carbon tetrachloride or thioacetamide. This enzyme formed N’-acetylspermidine when incubated with spermidine and acetyl-coA. The enzyme was also able to acetylate spermine, norspermidine, norspermine and, at a much slower rate, 1,3-diaminopropane. Putrescine, cadaverine, homospermidine, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2001